
Advanced Engineering Informatics 56 (2023) 101949

A
1

Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier.com/locate/aei

Full length article

BTAD: A binary transformer deep neural network model for anomaly
detection in multivariate time series data✩

Mingrui Ma a,1, Lansheng Han a,∗,2, Chunjie Zhou b,3

a Hubei Key Laboratory of Distributed System Security, Hubei Engineering Research Center on Big Data Security, School of Cyber Science and Engineering,
Huazhong University of Science and Technology, Wuhan, 430074, China
b The Key Laboratory of Ministry of Education for Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University
of Science and Technology, Wuhan, 430074, Hubei, China

A R T I C L E I N F O

Keywords:
Multivariate time series data
Bi-Transformer model
Model-agnostic meta learning
Adaptive multi-head attention mechanism
Self-conditioning mechanism

A B S T R A C T

In the context of big data, if the task of multivariate time series data anomaly detection cannot be performed
efficiently and accurately, it will bring great security risks to industrial systems. However, fast model inference
requirements, unlabeled datasets and excessively long time series make it a challenging problem to build an
accurate and fast anomaly detection model. In this paper, we propose an unsupervised Bi-Transformer anomaly
detection method (BTAD) for multivariate time series data, which uses Bi-Transformer structure to extract
dataset association features, and uses an improved adaptive multi-head attention mechanism to infer trends
in each meta-dimension of multivariate time series data in parallel. The modified Decoder structure prevents
the reconstructed output of BTAD from being disturbed by the input information. Self-conditioning mechanism
could enhance the robustness to noisy data, and improve model’s generalization ability. Experiments show that
BTAD could outperform other models in detection performance and training efficiency. Taking NAB dataset
as an example, the 𝐴𝑈𝐶 and 𝐹1 of BTAD are increased by more than 4.78% and 1.40% separately. Finally,
we look forward to the future development trend of BTAD, and put forward the corresponding improvement
ideas.
1. Backgrounds and motivations

Modern industrial systems generate large amounts of
high-dimensional sensor data at all times, which may contain many
anomalous data. If the anomalies are not explored, detected and fixed
in time, it is likely to jeopardize the normal operation of the system
and even lead to the consequences of system downtime. Anomaly
detection and diagnosis can find system defects and deficiencies in
time, so as to ensure the normal operation of system functions, maintain
the stability and enhance the robustness of the system. Time series
datasets are the result of different types of engineering components
(sensors, server clusters, robots, etc.) interacting with natural envi-
ronments (rivers, mountains, atmospheric pressure, etc.), humans or
other systems, which contain both time trends and a large amount of

✩ This work is supported by National Natural Science Foundation of China: 6217071437, 62072200, 62127808, and National Key Research and Development
Program of China: 2022YFB3103403.
∗ Corresponding author.
E-mail addresses: m202271767@hust.edu.cn (M. Ma), hanlansheng@hust.edu.cn (L. Han), cjiezhou@hust.edu.cn (C. Zhou).

1 His research interests include information security, network security, neural network, deep learning and artificial intelligence.
2 His research interests includes malicious code, big data security and network security, and has published more than 50 papers in various well-known journals

and conferences.
3 His research interests include safety and security control of industrial control systems, theory and networked control systems, and artificial intelligence

applications of Industrial Internet system.

random interference terms. Therefore, effectively capturing time series
trends and extracting series features from data containing noise is the
key to the multivariate time series anomaly detection task. However,
it is always a challenging problem to establish a system that can
quickly and accurately locate the anomaly, because the datasets in
this field have the characteristics of large data volume, no label, large
data fluctuation range, difficulty in capturing anomalies, unbalanced
data distribution [1]. Furthermore, anomalies are often caused by
the joint action of multiple variables, rather than relying on a single
variable. For example, many data-driven industries, including but not
limited to Internet of Things (IoT), Autonomous Driving Systems (ADS),
robotics and source management generate massive amount of volatile,
multimodal, distributed time series datasets [2]. In the context of
Industry 4.0, the geographic distance of distributed system databases
vailable online 27 March 2023
474-0346/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.aei.2023.101949
Received 2 November 2022; Received in revised form 20 February 2023; Accepted
 15 March 2023

https://www.elsevier.com/locate/aei
http://www.elsevier.com/locate/aei
mailto:m202271767@hust.edu.cn
mailto:hanlansheng@hust.edu.cn
mailto:cjiezhou@hust.edu.cn
https://doi.org/10.1016/j.aei.2023.101949
https://doi.org/10.1016/j.aei.2023.101949
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2023.101949&domain=pdf

Advanced Engineering Informatics 56 (2023) 101949M. Ma et al.

l
H
a
P
a

f
e
v
s
b
c
t
‘

a
(
t
s
f
m

u
f
i
c

l
u
t
c
o
e

n
e
t
s
c
e
m
p
i

T

and the gradual rise of federated learning paradigms have resulted in
only a strictly limited amount of available data in the aforementioned
systems. In addition, next-generation system applications require rapid
inference speed to recover from system anomalies, optimize Quality of
Service (QoS), and enhance service reliability [3].

In this context, anomaly detection models based on supervised
methods are difficult to adapt to new anomaly detection tasks, because
they must rely on clear labels in the training dataset to set decision
boundaries or divide confidence intervals. The above mentioned chal-
lenges have given rise to a large number of unsupervised anomaly
detection studies. In fact, the data imbalance becomes a prerequisite for
unsupervised anomaly detection models, because only in this case can
the model effectively learn the normal data’s feature distribution from
a large number of normal data and a small number of anomaly data.
According to the timeline, we divide the studies of anomaly detection
in multivariate time series data into three categories:

• anomaly detection based on statistical methods;
• anomaly detection based on machine learning algorithms;
• anomaly detection based on deep learning and neural networks.

Most of the statistical methods are incapable of capturing volatility
ong trend time-series as they usually rely on wavelet theory [4] or
ilbert transform [5], etc. to model data, and are rarely applied to
nomaly detection in high-order multivariate time series datasets [6].
rincipal Component Analysis (PCA) [7] and Markov chain [8] are also
vailable statistical methods for modeling time series distribution.

Another problem with statistical methods is that they generally suf-
er from ‘‘performance bottlenecks’’. Taking PCA as an example, it can
ffectively reduce the dimension of multivariates, and find out several
ariables that have the greatest impact on the stable operation of the
ystem. However, it ignores the fact that many anomalies are caused
y numerical fluctuations of variables (influencing factors) with little
orrelation in the stable operation of the system. PCA cannot address
he root cause of this problem, because PCA will always prioritize the
‘principal components’’ and ignore ‘‘non-principal components’’.

In view of the shortcomings of statistical methods, machine learning
lgorithms such as Regression model [9], Support Vector Machine
SVM) [10] and K-means clustering [10] have been applied to the
ask of modeling the distribution of time series data. Compared with
tatistical methods, These methods have improved model decision per-
ormance, but are still limited by information memory capacity for
odeling time trends.

With the development of Deep Neural Network (DNN) [11], it is
ndeniable that most of the advanced contemporary models adopt some
orm of DNN. Researchers find that Recurrent Neural Networks (RNN)
n NLP tasks have excellent contextual memory and feature extraction
apabilities for anomaly detection tasks with serialized data.

Long-Short-Term-Memory (LSTM) [12] could effectively model
ong-term and short-term memory dependencies, and has been widely
sed in various unsupervised anomaly detection tasks. However, due
o the linear structure and many logic gates, LSTM suffers from high
omputational cost and slow operation speed. GRU [13] simplifies the
peration flow of logic gates on the basis of LSTM, but has limited
fficiency improvement.

Transformer [14], as one of the State-Of-The-Art (SOTA) neural
etwork structures in NLP tasks, has a unique attention mechanism that
nables it to have the ability to remember contextual information far-
her than RNNs. Position Encoding enables Transformer to parallelize
ingle-shot inference on the complete input sequence without signifi-
antly increasing the computational overhead like RNN structures. Tuli
t al. proposed TranAD [15], a Transformer-based anomaly detection
odel for multivariate time series data. The idea of this work is highly
ioneering and has excellent anomaly detection performance with rapid
nference time.

In this paper, we proposes BTAD, a compound structure of Bi-
2

ransformer for anomaly detection task of multivariate time series
data, introducing adaptive multi-head attention mechanism to improve
detection performance and enhance generalization ability. BTAD’s main
contributions are as follows:

i. We propose the Bi-Transformer architecture, which can carry
out feature extraction and operation from two dimensions in
parallel, which improves the performance and efficiency of mul-
tivariate time series data anomaly detection tasks;

ii. We construct an adaptive multi-head attention mechanism that
enables BTAD to effectively capture the features of each dimen-
sion in multivariate time series data;

iii. We improve numerous auxiliary methods, such as alternat-
ing update strategy in the generative adversarial training ap-
proach, dataset division method in Model-agnostic meta learning
(MAML) and modified Decoder structure, which enable BTAD to
become a universal anomaly detection model for multivariate
time series data. We further propose an evaluation metric that
can consider both model performance and time efficiency.

The rest of the paper is organized as follows: Section 2 summarizes
the related work. Section 3 describes the algorithm principle and op-
eration process of BTAD in detail. Section 4 evaluates the performance
and efficiency of BTAD through a variety of comparative experiments.
Section 5 performs ablation analysis and sensitivity analysis of BTAD
and discusses the limitations of proposed method. Section 6 summarizes
the article.

2. Related work

Anomaly detection of serialized data is a long-term problem in
scientific research. According to different data types, serialized data
can be divided into two types: unary and multivariate. For the former,
relevant methods mainly focus on series analysis and tracking of unary
data to detect the existing anomalies [16]. For the latter, correlation
methods mainly use multiple series to track each variable [17,18].

2.1. Methods based on statistics

Animesh [19] et al. discussed and summarized the methods of
modeling time series data using PCA, process regression and hidden
Markov chains, and pointed out the limitations and shortcomings of
each method. As the research progressed, some methods evolved from
statistics emerged. Paul [20] proposed GraphAn, a graph representation
of low-dimensional embedding for detecting anomalous subsequences.
This method converts the input of time series into graphs, and uses
graph distance measurement to detect outliers. Some studies [21,22]
adopt isolation forest, which uses a collection of multiple isolation
trees to recursively divide the feature space for anomaly detection. As-
rul [23] et al. proposed ARIMA, an Auto-Regressive Integrated Moving
Average method to model and detect anomalous behaviors, which is
also considered as one of the most representative models in statistical
methods.

2.2. Methods based on machine learning

Osman [24] et al. combined SVM with linear regression to perform
anomaly detection for wireless sensor networks in medical domain.
Yiyang [25] et al. used a pre-trained single-class SVM and an adaptive
extended Kalman filter to detect anomalies and improve the security of
CAV system. SAND [26], CPOD [27] and Elle [28] all used clustering
and database read/write history to detect outliers. Wenli [29] et al.
integrated mean clustering with SVM to effectively improve model
training efficiency and anomaly detection accuracy. Dhiman [30] et al.
used adaptive threshold and twin support vector machine (TWSVM) for
anomaly detection of two univariate time series data (gearbox oil and

bearing temperatures) in wind turbines.

Advanced Engineering Informatics 56 (2023) 101949M. Ma et al.
2.3. Methods based on neural network and deep learning

Currently, models based on deep learning and neural networks
(DAD) mainly use reconstruction, prediction, generative, confidence
score analysis etc. to detect anomalies. DAD learn hierarchical discrim-
inative features from data, which eliminates the need of developing
manual features by domain experts.

Kyle [31] et al. proposed LSTM-NDT, which takes the input se-
quence as training data and predicts the data of the next timestep
on the current timestep. Guangxuan [32] et al. integrated LSTM and
Generative Adversarial Networks (GAN), and proposed a model named
LSTM-GAN to detect time series anomalies. Hong-soon [33] et al.
proposed a scheme to detect anomaly data using LSTM autoencoder.
However, all LSTM methods suffer from long time series data memory
loss and inefficient modeling, especially when the dataset is noisy.

Bo [34] et al. proposed DAGMM, which reduces the dimension
in the feature space by using a deep autoencoder Gaussian mixture
model, and applies RNN to model time sequences. The parameters of
each Gaussian are determined by the parameters of the DNN model.
The autoencoder compresses the original input sequence into a latent
space, and uses a recurrent estimation network to predict the next
data point in the latent space. Ya [35] et al. proposed OmniAboration,
a stochastic RNN for multivariate time series data anomaly detec-
tion. Compared with pure LSTMs, such methods have better anomaly
detection performance, but still suffer from long training time problem.

Chuxu [36] et al. proposed MSCRED, which innovatively converts
input sequences into 2-dimensional images using a CNN, and sub-
sequently feeds them into a Conv-LSTM neural network to capture
time patterns. Finally, the input feature matrix is reconstructed us-
ing a convolutional decoder by encoding inter-sensor correlations and
feature mapping of temporal information, and the remaining feature
matrix is further used to detect and diagnose anomalies. Li [37] et al.
innovatively used an LSTM-GAN model, and modeled the time series
distribution with generators. Also, this work uses discriminator losses to
compute anomaly score. This work is highly inspiring and many GAN-
based anomaly detection models for time series data have emerged on
this basis.

Recent works have shown a trend of method mixing to compensate
for the shortcomings of individual models. Hang [18] et al. proposed
MTAD_GAT, a method for modeling feature and time correlation using
graph attention network. Yuxin [38] et al. proposed CAEM, a method
using convolutional autoencoder. It transmits time series through CNN,
and further processes the output of CNN through Bi-LSTM neural
network to capture the long-term time trend. Julien [39] et al. proposed
USAD, an unsupervised anomaly detection method that enables fast and
stable detection of multivariate data. The structure of USAD adopts an
autoencoder with dual decoders and an adversarial training framework,
which can effectively reduce the performance overhead associated with
training. OpenGauss [40] is improved on the basis of LSTM structure by
using a tree-based LSTM, which reduces the performance consumption
of the model in terms of memory and resource usage, and is able to cap-
ture temporal trends in the presence of noisy data. However, the small
input window makes OpenGauss ineffective in capturing long-term
dependencies. In the experiment part, BTAD will also compare with
the above various SOTA methods based on different neural network
architectures, such as MTAD_GAT, USAD, etc., in terms of performance
and efficiency.

Recently, there are also many tasks using Transformer model for
anomaly detection. TranAD [15] restacks and reconstructs
Transformer’s architecture for better anomaly detection performance.
HitAnomaly [41] separates the log into log template sequence and
parameter value sequence, and uses two encoders to encode log tem-
plate sequence and parameter value sequence respectively, then treats
Transformer as a classification model to complete the corresponding
anomaly detection task. Although HitAnomaly adopts Transformer
model, it is only applicable to natural language log data, and cannot
3

Fig. 1. Real-time application scenarios.

use general continuous time series data as input, so its application
range is limited. Also, HitAnomaly does not improve the structure
of Vanilla Transformer to further improve the detection performance.
This problem also exists in the work of Haixuan [42], Markus [43]
and Sergio [44] et al. Hayato [45] et al. used the attention mecha-
nism in Transformer model for unsupervised anomaly noise detection
task. Chuankai [46] et al. proposed an unsupervised log anomaly
detection method LSADNET based on local information extraction and
global sparse Transformer model to learn global dependencies between
logs. Some scholars also began to apply Transformer to anomaly
detection tasks in different domains, which confirms the generality
of Transformer model structure from the side. TransAnomaly [47]
applies Transformer to visual anomaly detection in videos. GTA [48]
uses Transformer to learn graph structure and performs multivariate
time series anomaly detection in IoT scenario. DCT-GAN [49] can
further improve the accuracy and generalization ability of the model
by using the method based on Dilated Convolutional Transformer.
Yixin [50] et al. proposed TADDY, a Transformer-based dynamic graph
anomaly detection method. TADDY is able to accomplish the task of
dynamic graph anomaly detection by constructing a comprehensive
node encoding strategy in the absence of information encoding.

2.4. Hybrid method

A few methods also employ multiple strategies simultaneously to
obtain better performance. Subama [51] et al. used a combination of
SVM and Naive Bayes methods to build an anomaly detection system,
and experimentally verified the superior performance of this hybrid
method. Stratis [52] et al. simultaneously used three methods includ-
ing wavelet analysis, Hilbert transform and neural network to detect
anomalies in time series data.

2.5. Real-time application scenarios of anomaly detection

Serialized anomaly detection has the characteristic of multiple sce-
narios, such as wind turbine anomaly detection [30], log anomaly
detection [41], noise anomaly detection [45], dynamic graph anomaly
detection [50], credit card fraud anomaly detection [53,54], etc. In fact,
time series data is a branch of serialized data. Credit card transaction
records, timesteps of system logs, and other such structured types of
data that have logical sequential relationships can be processed using
deep learning methods with contextual feature extraction capabilities.
Fig. 1 shows our summary of the real-time application scenarios for
serialized data.

However, the presentation of sequential relationships varies in dif-
ferent application scenarios. For example, in credit card fraud, corre-
sponding information on temporal and spatial behaviors needs to be
integrated [53], whereas in wind turbines, only univariate time series

Advanced Engineering Informatics 56 (2023) 101949M. Ma et al.
need to be considered [30]. Researchers need to modify, adapt the
model structure to specific application scenarios, and perform transfer
learning to achieve better performance.

2.6. Summary of related work

Let us make a brief summary: statistical methods and machine
learning algorithms are not very effective in modeling time series
data. LSTM and GRU neural networks, although capable of capturing
contextual information of time series data, suffer from slow inference
speed and inefficient operation. Research on Transformer’s application
in anomaly detection is still in its infancy, and most of the related
research is focused on textualized anomaly detection tasks such as logs.
Hybrid models are the future trend of related research in this area.

3. BTAD algorithm design

3.1. Preprocess

To promote stable training and enhance the robustness of BTAD, we
convert datasets from different sources into a unified format, as shown
in the following steps:

A. Identify and distinguish whether the dataset is a unary or a
multivariate time series dataset
Identifying and distinguishing dataset types is one of the strate-
gies to optimize the efficiency of BTAD. BTAD can automati-
cally shield one of the Transformer structures to complete the
anomaly detection task for unary time series data. In the rest of
the cases, BTAD will activate Bi-Transformer simultaneously to
improve detection performance. Another benefit of shielding is
the ability to further reduce the performance overhead required
for BTAD training and testing.

B. Removing irrelevant information from datasets & unifying for-
mats and specifications
In this step, we remove some information irrelevant to anomaly
detection, such as the source of the dataset, the description of the
dataset, etc, and only reserve core information, such as dataset
size, anomaly labels, time step, etc.

C. Matrix transpose and reshape operation (for multivariate time
series datasets)
A multivariate time series dataset can be abstractly described as
the matrix shown in Fig. 2.
Among them, we assume that the input multivariate time series
dataset is a 𝑚 × 𝑛 size matrix. 𝑈𝑖(1 ≤ 𝑖 ≤ 𝑛) of dimension 0
represents a unit, and 𝑇𝑗 (1 ≤ 𝑗 ≤ 𝑚) of dimension 1 represents a
time step in the multivariate time series.
Both dimension 0 and dimension 1 require Transformer to ex-
tract anomaly features in the form of sliding windows for sub-
sequent operations. Therefore, for dimension 1, we perform a
reshape operation to convert it to the same matrix shape as
dimension 0 for Transformer processing. The specific flow is
shown in Fig. 3.

D. Normalization operation and sliding window sequence conver-
sion
For multivariate time series datasets, the normalization opera-
tion needs to be carried out once from dimension 0 and dimen-
sion 1 respectively, and the running processes are identical in
both directions. For unary time series datasets, the normalization
operation only needs to carried out from dimension 0. Therefore,
we only take dimension 0 as an example to illustrate here:
From the perspective of dimension 0, the multivariate time series
dataset matrix can be regarded as

𝑆 = {𝑇 , 𝑇 ,… , 𝑇 } (1)
4

1 2 𝑚
where 𝑇𝑗 (1 ≤ 𝑗 ≤ 𝑚) represents a row in the matrix. Each element
in the multivariate time series matrix can be indexed through the
coordinate form such as 𝑈𝑝𝑇𝑞(1 ≤ 𝑝 ≤ 𝑛, 1 ≤ 𝑞 ≤ 𝑚).
We define the normalization formula as follows:

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑠 =
𝑇𝑗 − min(𝑆)

max(𝑆) − min(𝑆) + 𝛿
(2)

where, 𝛿 is a small constant vector, which is designed to prevent
the denominator from being 0 in some extreme cases of certain
datasets. min(𝑆) and max(𝑆) respectively represent the mode
wise minimum and mode wise maximum vectors under the
current dataset.
Through the normalization operation, we compress the data
range of the dataset into the space [0, 1), then the multivariate
time series dataset matrix is converted into:

𝑆𝑎𝑓𝑡𝑒𝑟𝑛𝑜𝑟 = {𝑇𝑎𝑓𝑡𝑒𝑟𝑛𝑜𝑟1, 𝑇𝑎𝑓𝑡𝑒𝑟𝑛𝑜𝑟2,… , 𝑇𝑎𝑓𝑡𝑒𝑟𝑛𝑜𝑟𝑚} (3)

To further strengthen the contextual feature extraction ability of
BTAD, we define an sliding input window 𝑊𝑇𝑎𝑓𝑡𝑒𝑟𝑛𝑜𝑟𝑗 at time step
𝑇𝑗 (1 ≤ 𝑗 ≤ 𝑚) of length 2𝑘:

𝑊𝑇𝑎𝑓𝑡𝑒𝑟𝑛𝑜𝑟𝑗 = {𝑇𝑎𝑓𝑡𝑒𝑟𝑛𝑜𝑟𝑗−𝑘, 𝑇𝑎𝑓𝑡𝑒𝑟𝑛𝑜𝑟𝑗−𝑘+1,… , 𝑇𝑎𝑓𝑡𝑒𝑟𝑛𝑜𝑟𝑗+𝑘} (4)

In the case of 𝑎𝑓𝑡𝑒𝑟𝑛𝑜𝑟𝑗 < 𝑘 or 𝑎𝑓𝑡𝑒𝑟𝑛𝑜𝑟𝑗 + 𝑘 > 𝑚, a padding
operation is used to maintain a fixed window size. In time
series tasks, anomalies at different time steps are not inde-
pendent of each other, but are influenced by contextual as-
sociations (i.e., previous or subsequent time steps). Therefore,
the sliding window allows BTAD to no longer be limited to
analyzing anomalies for individual time steps, but to analyze
serialized anomalies using the window size as the perceptual
field range of the model, thus helps to attenuate fluctuations
in the anomaly scores, avoid the problem of training instabil-
ity triggered by excessive deviation from anomalies, similar to
low-pass filter technology, which is also a common practice in
previous works [39].
Now, the complete multivariate time series matrix can be re-
expressed as:

𝑊 = {𝑊𝑇𝑎𝑓𝑡𝑒𝑟𝑛𝑜𝑟1 ,𝑊𝑇𝑎𝑓𝑡𝑒𝑟𝑛𝑜𝑟2 ,… ,𝑊𝑇𝑎𝑓𝑡𝑒𝑟𝑛𝑜𝑟𝑚} (5)

We define the current processing time step of Transformer as
𝑡. Then 𝑆𝑡

𝑎𝑓 𝑡𝑒𝑟𝑛𝑜𝑟 and 𝑊 𝑡 denote the time slice until the time
step 𝑡 of the normalized complete sequence and the sliding input
window of length 2𝑘 for time step 𝑡 respectively.
In order to use the generative adversarial training idea, we take
both 𝑆𝑡

𝑎𝑓 𝑡𝑒𝑟𝑛𝑜𝑟 and 𝑊 𝑡 as the input of BTAD, which will be
explained later in Section 3.2.2.

E. Divide train set, test set, add labels to test set, and store them in
.𝑛𝑝𝑦 format
The last stage of preprocessing is to divide the dataset into train
set and test set. Based on the experience of previous work [55],
we divide 80% of the dataset into train set and 20% into test set,
label test set with [0, 1] to measure the performance of different
models in test stage. For a unary dataset, the final preprocessing
format can be visually represented as:

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 = [‘𝑡𝑟𝑎𝑖𝑛’, ‘𝑡𝑒𝑠𝑡’, ‘𝑙𝑎𝑏𝑒𝑙𝑠’] (6)

For a multivariate dataset, we need to store both the original
and the reshaped data, so the final preprocessing format can be
expressed as:

𝐷𝑎𝑡𝑎𝑠𝑒𝑡1 = [‘𝑡𝑟𝑎𝑖𝑛’, ‘𝑡𝑒𝑠𝑡’, ‘𝑙𝑎𝑏𝑒𝑙𝑠’] (7)

𝐷𝑎𝑡𝑎𝑠𝑒𝑡2 = [‘𝑟𝑒𝑠ℎ𝑎𝑝𝑒𝑑_ 𝑡𝑟𝑎𝑖𝑛’, ‘𝑟𝑒𝑠ℎ𝑎𝑝𝑒𝑑_ 𝑡𝑒𝑠𝑡’, ‘𝑟𝑒𝑠ℎ𝑎𝑝𝑒𝑑_ 𝑙𝑎𝑏𝑒𝑙𝑠’]
(8)

Advanced Engineering Informatics 56 (2023) 101949M. Ma et al.
Fig. 2. The matrixed form of multivariate time series dataset.

Fig. 3. Matrix transpose & reshape.

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 = 𝐷𝑎𝑡𝑎𝑠𝑒𝑡1 ∪𝐷𝑎𝑡𝑎𝑠𝑒𝑡2 (9)

Finally, all datasets are stored in .𝑛𝑝𝑦 format for subsequent
processing.

3.2. BTAD model

3.2.1. The overall structure of BTAD model
The overall structure of BTAD is shown in Fig. 4.
According to Fig. 4, for the multivariate time series data matrix,

Transformer1 and Transformer2 in BTAD perform neural network oper-
ation and forward propagation from two dimensions. For Transformer2,
the matrix dimension of Reshaped matrix is consistent with multivari-
ate time series data matrix. The inputs of Transformer1, Transformer2
are both matrix 𝑆𝑡

𝑎𝑓 𝑡𝑒𝑟𝑛𝑜𝑟 ∈ 𝑅2𝑘×𝑛 and matrix 𝑊 𝑡 ∈ 𝑅𝑡×𝑛. Both
Transformer1 and Transformer2 generate two reconstructed output
matrices (𝑅𝑂1, 𝑅𝑂2 ∈ 𝑅2𝑘×𝑛) each, and obtain their respective anomaly
score 𝐴𝑠1 and 𝐴𝑠2 by the relevant calculation methods. 𝐴𝑠2 is further
converted into the time step format. The Composite Anomaly Score
(𝐴𝑠) is obtained by weighted average calculation and judge whether
there is an anomaly (see Section 3.3). For unary time series data,
the multivariate time series data matrix degenerates into a vector.
According to Section 3.1, BTAD will shield Transformer2, only call
Transformer1 for operation, and use 𝐴𝑠1 to determine whether there
is an anomaly.
5

3.2.2. Detail design of transformer in BTAD model
Transformer has demonstrated superior performance in many NLP

and CV tasks, but most of the existing studies have only applied
Transformer to the log templates anomaly detection as described in Sec-
tion 2.3. In order to meet the needs of multivariate time series anomaly
detection tasks, we modify and restack the structure of Transformer,
and incorporate various auxiliary methods.

Taking Transformer1 as an example, the internal structure of Trans-
former in BTAD is shown in Fig. 5 (corresponding to the blue part in
Fig. 4).

Among them, the internal structures of Encoder1, Encoder2, En-
coder3 and Encoder4 in Fig. 5 are basically the same. The slight
difference is that Encoder3 and Encoder4 use a mask method in the
adaptive multi-head attention mechanism to prevent local information
from interfering during the training of Transformer, and can obtain
further timesteps in the same input batches, as shown in Fig. 6.

In Fig. 6, the dotted arrows are residual connections of information.
The role of introducing residual connections is to solve the problem of
gradient disappearance and the degeneracy of weight matrix.

The process of Fig. 6 can also be described by the following formula:

𝐸𝑂1 = 𝐿𝑁(𝐸𝐼1 +𝑀𝐻𝐴(𝐸𝐼1)) (10)

𝐸𝑂2 = 𝐿𝑁(𝐸𝑂1 + 𝐹𝐹𝑁𝑁(𝐸𝑂1)) (11)

where, 𝐸𝐼1 is the input of a single encoder and 𝐸𝑂2 is the output
of a single encoder. 𝐿𝑁 represents layer normalization operation, +
represents matrix addition operation, 𝐹𝐹𝑁𝑁 represents Feed-Forward
Neural Network, and 𝑀𝐻𝐴 is the adaptive multi-head attention mech-
anism mentioned later. The above operations use 𝑆𝑡

𝑎𝑓 𝑡𝑒𝑟𝑛𝑜𝑟 and 𝑊 𝑡 to
generate attention weights for capturing temporal trends. For Trans-
former1, each current timestep does not depend on the output of the
previous timestep, so BTAD is able to perform inference operations on
multiple sliding windows in parallel, thus reducing training time.

The internal structures of Decoder1, Decoder2, Decoder3 and De-
coder4 in Fig. 5 are identical, where Decoder1, Decoder2 and Decoder3,
Decoder4 are connected in serial mode respectively, for the purpose of
generative adversarial training using the corresponding reconstructed
outputs. The specific structure of decoder is shown in Fig. 7.

Instead of using the Encoder–Decoder attention layer, decoder uses
self-attention layer. This is because BTAD needs to judge the anomaly
through the reconstruction error, while the Encoder–Decoder attention
layer will focus on the input sequence, thus causing interference to the
reconstruction output (see Section 5.1).

The process in Fig. 7 can also be described by the following formula:

𝐷𝑂1 = 𝐿𝑁(𝐷𝐼1 +𝑀𝐻𝐴(𝐷𝐼1)) (12)

𝐷𝑂2 = 𝐿𝑁(𝐷𝑂1 +𝑀𝐻𝐴(𝐷𝑂1)) (13)

𝐷𝑂3 = 𝐿𝑁(𝐷𝑂2 + 𝐹𝐹𝑁𝑁(𝐷𝑂2)) (14)

𝐷𝑂4 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝑙𝑢(𝐷𝑂3) (15)

All symbols in the formula have the same meaning as the encoder
symbols explained above. 𝐷𝐼1 is the input of a decoder and 𝐷𝑂4 is the
final output of a decoder. BTAD uses 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝑙𝑢 activation function in
a single decoder, and 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 activation function is used in the final
output part of the stacked model. The reason is that 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 activation
function can effectively compress the output into a [0, 1] range, thus
matching the data range of the normalized input and promoting the
operation of BTAD. In order to facilitate the following description, some
symbolic specifications for the input and output of the model in Fig. 5
are given here, which will not be explained later.

i. The input 𝑆𝑡
𝑎𝑓 𝑡𝑒𝑟𝑛𝑜𝑟 is called 𝑀𝐼1 (Model Input 1)

ii. The input 𝑊 𝑡 is called 𝑀𝐼 (Model Input 2)
2

Advanced Engineering Informatics 56 (2023) 101949M. Ma et al.
Fig. 4. The overall structure of BTAD model.
Fig. 5. The internal structure of BTAD model.

Fig. 6. The Encoder structure of BTAD.
6

Fig. 7. The Decoder structure of BTAD.

iii. The Reconstructed Output1 of Decoder2 in the first stage is
called 𝑀𝑂1𝑆1 (Model Output1 at Stage 1)

iv. The Reconstructed Output2 of Decoder4 in the first stage is
called 𝑀𝑂2𝑆1 (Model Output2 at Stage 1)

v. The Reconstructed Output2 of Decoder4 in the second stage is
called 𝑀𝑂2𝑆2 (Model Output2 at Stage 2)

vi. Encoder1, Encoder2, Encoder3, Encoder4 and Decoder1, De-
coder2, Decoder3, Decoder4 are abbreviated as 𝐸1, 𝐸2, 𝐸3, 𝐸4
and 𝐷1, 𝐷2, 𝐷3, 𝐷4 respectively.

Note: Stage 1 and Stage 2 refers to Section 3.2.2.3 Generative
Adversarial Training method.

3.2.2.1. Position encoding.
For the multivariate time series data anomaly detection task, we still

need to determine the position information of each time step or each
meta-dimension. BTAD model adopts an absolute Position Encoding
method based on sin and cos function, which prevents the problem of

Advanced Engineering Informatics 56 (2023) 101949M. Ma et al.
Fig. 8. The adaptive multi-head attention mechanism of BTAD.

encoding collisions in dimensions up to 20,000.

⃖⃖⃗𝑝𝑡 = 𝑓 (𝑡)(𝑖) ∶=

{

sin (𝜔𝑘 ⋅ 𝑡) if(i=2k)
cos (𝜔𝑘 ⋅ 𝑡) if(i=2k+1)

(16)

where 𝜔𝑘 = 1
100002𝑘∕𝑑

.
After calculating the position information, it is necessary to add the

Position Encoding vector to the model input vector, as shown in the
following formula:

𝛹 ′(𝜔𝑡) = 𝛹 (𝜔𝑡) + ⃖⃖⃗𝑝𝑡 (17)

To ensure correct vector addition, the dimension of the Position
Encoding vector ⃖⃖⃗𝑝𝑡 must be consistent with the input dimension.

3.2.2.2. Adaptive multi-head attention mechanism.
We define the Scale-dot product attention score formula as follows:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇
√

𝑠𝑐𝑎𝑙𝑒
)𝑉 (18)

𝑄, 𝐾 and 𝑉 are three learnable parameters in Transformer, which
are 𝑄𝑢𝑒𝑟𝑦 matrix, 𝐾𝑒𝑦 matrix and 𝑉 𝑎𝑙𝑢𝑒 matrix respectively. They are
essentially composed of 𝑄𝑢𝑒𝑟𝑦 vectors, 𝐾𝑒𝑦 vectors and 𝑉 𝑎𝑙𝑢𝑒 vectors,
and the specific weight values will be dynamically adjusted during
model training. The essential reason for adopting matrix operation is to
improve the operation efficiency of Transformer. The 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 distribu-
tion is used to generate the convex combination weights for the matrix
𝑉 and allows us to compress the calculation result into a smaller rep-
resentative embedding space, which simplifies the subsequent neural
network model inference operations.

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
𝑒𝑥𝑝(𝑥𝑖)

∑

𝑗 𝑒𝑥𝑝(𝑥𝑗)
(19)

The operation of
√

𝑠𝑐𝑎𝑙𝑒 is to make the gradient of the model more
stable, prevent the obvious fluctuations of weight, and promote stable
training.

The above operation of attention mechanism can be regarded as
a complete operation process of single attention head. In the BTAD
model, we propose an adaptive multi-head attention mechanism whose
number of attention heads is automatically adjusted according to the
dimension of the current input to the model. Taking Transformer1 in
Fig. 4 as an example, the number of attention heads is aligned with
Dimension 0 of the multivariate time series data matrix. The impact
of each element in the current time step on the system anomaly is
measured by assigning a separate attention head to each element of the
multivariate data and calculating an attention score using the atten-
tion mechanism mentioned above. The adaptive multi-head attention
mechanism allows BTAD to achieve better performance than Vanilla
Transformer because it can capture and pass numerical information of
all elements without being limited to a fixed number of attention heads,
which further extends the ability of the model on focusing at different
positions, and enhance the attention layer by giving attention many sub
representations. Fig. 8 visually illustrates BTAD’s adaptive multi-head
attention mechanism.

After completing the operation of each attention head with the
adaptive multi-head attention mechanism, we apply 𝐶𝑜𝑛𝑐𝑎𝑡 operation
7

to connect the operation results (𝑍 matrix) of all attention heads. In or-
der to avoid the problem of matrix dimension explosion, an additional
weight matrix 𝑊 𝑂 is used to calculate with the matrix [56], and the
final result matrix is re-compressed to the same dimension size as the
matrix output by a single attention head. In the whole BTAD model,
𝑄, 𝐾 and 𝑉 matrices mentioned above participate in joint training to
adjust weights. The whole process can be described by the following
formulas:

𝑀𝐻𝐴(𝑄,𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐻𝑒𝑎𝑑1,𝐻𝑒𝑎𝑑2,… ,𝐻𝑒𝑎𝑑𝑛) (20)

where 𝐻𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖, 𝐾𝑖, 𝑉𝑖)(1 ≤ 𝑖 ≤ 𝑛).

𝑀𝑎𝑡𝑟𝑖𝑥𝑀𝑢𝑙𝑡 = 𝑀𝐻𝐴(𝑄,𝐾, 𝑉)
⨂

𝑊 𝑂 (21)

where ⨂ stands for matrix multiplication.

3.2.2.3. Generative adversarial training method.
Since GAN [37] has been proved to have excellent performance

in the task of anomaly detection, and the 2-stage training methods
proposed in TranAD [15] could further amplify the anomalous features
and reduce false positive rates, BTAD adopts and modifies the 2-stage
generative adversarial training method to train the model (the blue
module in Fig. 5), and the pseudocode of the algorithm is as follows:

Algorithm 1 Two Stages Adversarial Training Algorithm
1: n=0
2: while n < N do
3: for i=1 to T do
4: 𝑀𝑂1𝑆1 = 𝐷2(𝐸4(𝐷𝑎𝑡𝑎𝑠𝑒𝑡(′𝑡𝑟𝑎𝑖𝑛′)))
5: 𝑀𝑂2𝑆1 = 𝐷4(𝐸4(𝐷𝑎𝑡𝑎𝑠𝑒𝑡(′𝑡𝑟𝑎𝑖𝑛′)))
6: 𝑀𝑂2𝑆2 = 𝐷4(𝐸4(𝐷𝑎𝑡𝑎𝑠𝑒𝑡(′𝑡𝑟𝑎𝑖𝑛′), ||𝑀𝑂1𝑆1

−𝐷𝑎𝑡𝑎𝑠𝑒𝑡(′𝑡𝑟𝑎𝑖𝑛′)||2))
7: 𝐿𝑜𝑠𝑠1 = 𝛿−𝑛||𝑀𝑂1𝑆1 −𝐷𝑎𝑡𝑎𝑠𝑒𝑡(′𝑡𝑟𝑎𝑖𝑛′)||2 + (1−

𝛿−𝑛)||𝑀𝑂2𝑆2 −𝐷𝑎𝑡𝑎𝑠𝑒𝑡(′𝑡𝑟𝑎𝑖𝑛′)||2
8: 𝐿𝑜𝑠𝑠2 = 𝛿−𝑛||𝑀𝑂2𝑆1 −𝐷𝑎𝑡𝑎𝑠𝑒𝑡(′𝑡𝑟𝑎𝑖𝑛′)||2 − (1−

𝛿−𝑛)||𝑀𝑂2𝑆2 −𝐷𝑎𝑡𝑎𝑠𝑒𝑡(′𝑡𝑟𝑎𝑖𝑛′)||2
9: Adjusting BTAD weights using an alternating

update strategy
10: 𝑛 = 𝑛 + 1

However, due to the difference in the model stacking structure,
we involve the reconstructed outputs generated by 𝐷2 and 𝐷4 in the
generative adversarial training stage.

Therefore, the final loss functions of BTAD in the 2-stage training
are:

𝐿𝑜𝑠𝑠1 = 𝛿−𝑛‖𝑀𝑂1𝑆1 −𝐷𝑎𝑡𝑎𝑠𝑒𝑡(‘𝑡𝑟𝑎𝑖𝑛’)‖2

+ (1 − 𝛿−𝑛)‖𝑀𝑂2𝑆2 −𝐷𝑎𝑡𝑎𝑠𝑒𝑡(‘𝑡𝑟𝑎𝑖𝑛’)‖2 (22)

𝐿𝑜𝑠𝑠2 = 𝛿−𝑛‖𝑀𝑂2𝑆1 −𝐷𝑎𝑡𝑎𝑠𝑒𝑡(‘𝑡𝑟𝑎𝑖𝑛’)‖2

− (1 − 𝛿−𝑛)‖𝑀𝑂2𝑆2 −𝐷𝑎𝑡𝑎𝑠𝑒𝑡(‘𝑡𝑟𝑎𝑖𝑛’)‖2 (23)

where 𝛿 is the evolutionary parameter, 𝐿𝑜𝑠𝑠1 is the cumulative loss
of 𝐷2 and 𝐿𝑜𝑠𝑠2 is the cumulative loss of 𝐷4.

Drawing on the remarkable training success of GAN networks in the
field of image generation and image repairing, we propose a strategy
to alternately update the network weights during back propagation
computation. Specifically, during each training epoch, 𝐿𝑜𝑠𝑠1 is first
propagated with the BP algorithm from 𝐷2 to 𝐷1, then to 𝐸4 and the
associated encoder modules. During this process, the internal weights
of 𝐷3 and 𝐷4 are frozen. After the propagation process of 𝐿𝑜𝑠𝑠1 is
calculated, then 𝐿𝑜𝑠𝑠 is propagated from 𝐷 to 𝐷 , then to 𝐸 and the
2 4 3 4

Advanced Engineering Informatics 56 (2023) 101949M. Ma et al.
Fig. 9. Using MAML methods to divide the dataset.

associated encoder modules. Similarly, the internal weights of 𝐷1 and
𝐷2 are frozen. BTAD completes one epoch of weight updates during
model training if and only if the propagation process of both 𝐿𝑜𝑠𝑠1
and 𝐿𝑜𝑠𝑠2 are computed. The alternating update strategy can further
enhance the adversarial learning effect based on the amplified bias
of the 2-stage training process (i.e., each training epoch extends the
update step of 𝐷1, 𝐷2, 𝐷3 and 𝐷4), allowing BTAD to be fully trained
and achieve remarkable performance even with a small number of
training epochs (see Section 5.3.2).

3.2.2.4. Model-agnostic meta learning.
We introduce MAML technology [57] because MAML can not only

enhance the universality of the model, but also enable the model to
quickly learn the characteristics of new anomaly detection categories
and carry out efficient anomaly detection with only a small amount of
training data when facing new anomaly detection datasets. MAML is
essentially an idea rather than a specific algorithm, whose purpose is
to allow a neural network model to acquire as many features as possible
with limited data. BTAD uses gradient update methods in MAML at
each epoch of training to update the individual weight matrices in the
neural network [57].

In order to attenuate the instability of generative adversarial train-
ing, guarantee the complete randomness or non-repeatability of the
data for each training epoch, enhance the few-shot learning ability,
accelerate the convergence speed of BTAD and improve the detec-
tion accuracy under multiple datasets, we propose our own division
methods. Concretely, we further divide each complete training set of
multivariate time series data into 𝑁 𝑆𝑢𝑏_𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑠, each of which also
contains its own 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑠𝑒𝑡, 𝑞𝑢𝑒𝑟𝑦𝑠𝑒𝑡 and 𝑙𝑎𝑏𝑒𝑙𝑠, which can be expressed
as:

𝑆𝑢𝑏_𝐷𝑎𝑡𝑎𝑠𝑒𝑡 = [‘𝑠𝑢𝑏_𝑠𝑢𝑝𝑝𝑜𝑟𝑡’, ‘𝑠𝑢𝑏_𝑞𝑢𝑒𝑟𝑦’, ‘𝑠𝑢𝑏_𝑙𝑎𝑏𝑒𝑙𝑠’] (24)

𝑁 is not a fixed value, but is set to different values depending
on the specific dataset. Since BTAD adopts a sliding window form
of input, we cannot simply use random sampling to collect data and
generate 𝑆𝑢𝑏_𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑠, as this would result in the loss of time series
dependencies. BTAD divides the complete training set into blocks, each
of which is a continuous multivariate time series data, and blocks are
not intersected by each other, as shown in Fig. 9.

Suppose 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 ∈ 𝑅𝐿×𝑊 , then 𝑆𝑢𝑏_𝐷𝑎𝑡𝑎𝑠𝑒𝑡 ∈ 𝑅𝐿×𝑊 ∕𝑁 for each
𝑆𝑢𝑏_𝐷𝑎𝑡𝑎𝑠𝑒𝑡 block.

3.2.2.5. Self-conditioning mechanism.
The self-conditioning mechanism of BTAD has been clearly reflected

in Section 3.2.2.3 where the alternating update strategy optimize the
model weight, and in Section 3.2.2.4 the learning step of MAML up-
dates the weight matrix in neural network after each training epoch.
In addition, the learning rate in BTAD is dynamically adjusted by
𝑆𝑡𝑒𝑝𝐿𝑅, and the 𝐴𝑑𝑎𝑚𝑊 optimizer is adopted. These methods allow
BTAD to automatically optimize the parameters in the neural network
model according to the results of existing training data. Therefore,
we collectively refer to these methods as BTAD’s self-conditioning
mechanism.
8

3.3. Anomaly score

In Section 3.2, we discuss the complete running process and imple-
mentation details of single Transformer model in Fig. 4. We now use the
trained BTAD model for testing. The pseudo code of the whole process
is shown in Algorithm 2:
Algorithm 2 BTAD Testing Algorithm
1: for i=1 to 2 do
2: for t=1 to T do
3: 𝑀𝑂1𝑆1 = 𝐷2(𝐸4(𝐷𝑎𝑡𝑎𝑠𝑒𝑡(′𝑡𝑒𝑠𝑡′)))
4: 𝑀𝑂2𝑆1 = 𝐷4(𝐸4(𝐷𝑎𝑡𝑎𝑠𝑒𝑡(′𝑡𝑒𝑠𝑡′)))
5: 𝑀𝑂2𝑆2 = 𝐷2(𝐸4(𝐷𝑎𝑡𝑎𝑠𝑒𝑡(′𝑡𝑒𝑠𝑡′), ||𝑀𝑂1𝑆1−

𝐷𝑎𝑡𝑎𝑠𝑒𝑡(′𝑡𝑟𝑎𝑖𝑛′)||2)), 𝐷4(𝐸4(𝐷𝑎𝑡𝑎𝑠𝑒𝑡(′𝑡𝑒𝑠𝑡′),
||𝑀𝑂1𝑆1 −𝐷𝑎𝑡𝑎𝑠𝑒𝑡(′𝑡𝑟𝑎𝑖𝑛′)||2))

6: 𝐴𝑠𝑖 = 𝜌 × ||𝑀𝑂1𝑆1 −𝐷𝑎𝑡𝑎𝑠𝑒𝑡(′𝑡𝑒𝑠𝑡′)||2 + (1 − 𝜌)
×||𝑀𝑂2𝑆2 −𝐷𝑎𝑡𝑎𝑠𝑒𝑡(′𝑡𝑒𝑠𝑡′)||2

7: 𝐴𝑠 = 𝑊 𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑀𝑒𝑎𝑛(𝐴𝑠1, 𝐴𝑠2)
8: 𝐽𝐴 = 1(𝑖𝑓 (𝐴𝑠 ≥ 𝐸𝑉 𝑇 (𝐴𝑠)))

Among them, the variable 𝑖(𝑖 = 1𝑜𝑟2) in Algorithm 2 is used to
reveal the anomaly score 𝐴𝑠𝑖 calculated by the 𝑖𝑡ℎ Transformer. 𝐴𝑠
denotes Anomaly Score. It weights the 𝐴𝑠1 and 𝐴𝑠2 calculated by the
two Transformers respectively according to a scale factor 𝜙 to obtain
𝐴𝑠. 𝜙 can be fine-tuned according to different datasets used for training
and testing. For unary time series datasets, 𝐴𝑠 = 𝐴𝑠1. Then we use a
dynamic threshold adjustment algorithm (EVT) to judge whether 𝐴𝑠
will trigger system anomalies, and give the final diagnosis results of
the whole BTAD model.

From Algorithm 2, the core formula for calculating 𝐴𝑠𝑖 is

𝐴𝑠𝑖 = 𝜌×‖𝑀𝑂1𝑆1 −𝐷𝑎𝑡𝑎𝑠𝑒𝑡(‘𝑡𝑒𝑠𝑡’)‖2 +(1− 𝜌) ×‖𝑀𝑂2𝑆2 −𝐷𝑎𝑡𝑎𝑠𝑒𝑡(‘𝑡𝑒𝑠𝑡’)‖2 (25)

𝜌 is used to regulate the contribution of 𝐷2 and 𝐷4 to the anomaly
score. Meanwhile, the sum of coefficients is 1, which is used to ensure
that the total weight is constant.

In the test stage, BTAD still follows the 2-stage process during train-
ing, and uses the results of Stage 1 to provide reference for the weight
adjustment of Stage 2. 𝐴𝑠1 and 𝐴𝑠2 differ in a theoretical sense. For
Transformer1, it calculates the anomaly scores for different dimensions
of each time step; For Transformer2, it calculates the anomaly scores
for different time steps of each dimension. We weight average the
anomaly scores calculated by two Transformer, so as to ensure that the
𝐴𝑠 generated by BTAD can take into account both the anomalies in
the time series dimension and the anomalies in the multivariate series
dimension. As the anomaly thresholds vary across different datasets,
we apply Extreme Value Theory (EVT) method to automatically and
dynamically adjust the thresholds according to different test situations.
This method is essentially a statistical method for fitting the data
distribution with the Generalized Pareto Distribution (GPD) using the
EVT (corresponding to line 8 of Algorithm 2). Fig. 10 shows this process
with the MBA dataset as an example.

As can be seen in Fig. 10, the peaks of the anomaly scores in
different dimensions are highly correlated with the noise in the cor-
responding dimensional data. Anomaly scores are higher for time steps
(noise) that change significantly within the time series. In addition, the
fluctuations of anomaly scores vary for different dimensions, indicating
that the self-conditioning mechanism of BTAD is able to assign different
weights to different dimensions of different datasets, thus enhancing
the adaptability and robustness of BTAD to noisy data.

4. Experiment and evaluation

4.1. Experimental setup

We summarize the experimental environment as shown in Table 1.

Advanced Engineering Informatics 56 (2023) 101949M. Ma et al.
Fig. 10. Visualization flow of BTAD anomaly detection task.

Table 1
Experimental environment.

CPU Intel Xeon E7-4820 V4 (40 CPUs)

RAM 32GB
GPU NVIDIA Quadro RTX-5000 ×2
Language Python 3.8.3
AI Framework PyTorch 1.8.1

4.2. Dataset sources

In the experimental part, we use 6 different datasets (including 5
publicly available datasets) for our experiments. The relevant informa-
tion and introduction of each dataset are as follows:

i. SMD (server machine dataset) [35]: SMD is a dataset that mon-
itors the resource utilization of 28 high-performance computers
in the server computing cluster for 5 weeks. It is a typical
multivariate time series dataset with 38 dimensions.

ii. SWaT (Secure Water Treatment Dataset) [58]: SWaT dataset is
a classic anomaly detection dataset derived from sensor data of
a real water treatment plant. The water treatment plant obtains
normal and anomaly data by running normally for 7 days and
abnormally for 4 days. In addition to the sensor data that can
collect relevant information such as water level and flow rate,
some actuator operations (such as pumps, valves, etc.) are also
recorded in the data. Its data dimension is 1 and belongs to unary
time series dataset.

iii. SMAP (Soil Moisture Active Passive Dataset) [31]: SMAP is a
dataset of soil samples and telemetry information collected by
NASA’s Mars rover. It is a typical multivariate time series dataset
with 25 dimensions.
9

Table 2
Dataset Information.

Dataset Dimensions Data volume

SMD 38 1416830
SWaT 1 946276
SMAP 25 562800
MBA 2 200005
NAB 1 8068
MSDS 10 292860

iv. MBA (MIT-BIH Supraventricular Arrhythmia Dataset) [59]: MBA
dataset is a medical dataset which contains the electrocardio-
gram recordings of 4 patients. It contains two different types of
anomalies (supraventricular contractions and premature heart-
beats). Its data dimension is 2, which belongs to binary time
series dataset.

v. NAB (Numenta Anomaly Benchmark) [60]: NAB is a compre-
hensive dataset including many real-world aspects, such as CPU
utilization, temperature sensor readings, etc. Its data dimension
is 1 and belongs to unary time series dataset.

vi. MSDS (Multi-Source Distributed System Dataset) [61]: MSDS is
also a comprehensive dataset with multiple data sources, such
as application logs, distributed system metrics, etc. This dataset
is specially built for AI research. Its data dimension is 10 and
belongs to multivariate time series dataset.

Table 2 simplifies the information of relevant datasets.

4.3. Comparative experiment

In the comparative experiment part, we compare BTAD with several
methods based on different types of neural network architectures.
We do not include statistical methods and machine learning algo-
rithms in the comparison range as the performance of them is much
lower than that of neural network models. We respectively select
TranAD [15] as the representative method of Transformer architec-
ture; LSTM_NDT [31] as the representative method of LSTM neural
network; MAD_GAN [37] as the representative method of GAN neural
network; MTAD_GAT [18] as the representative method of Graph Neu-
ral Network (GNN); GDN [17] as the representative method of graph
attention network; MSCRED [36] as the representative method of CNN;
USAD [39] as the representative method based on the Encoder–Decoder
architecture. The above scientific research achievements basically cover
the mainstream neural network model methods applied to anomaly
detection tasks.

We select 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙, 𝐹1 which are commonly used in the
field of neural networks and deep learning, as well as the commonly
used evaluation index (𝐴𝑈𝐶) in the binary classification task to evalu-
ate the detection performance of the above models and BTAD.

The calculation formulas of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙 and 𝐹1 evaluation
indexes are as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(26)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(27)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(28)

At the same time, we examine the training efficiency of each model.
The evaluation from the aspects of performance and efficiency allows
us to more comprehensively examine the overall performance of a
method. We also manually construct datasets with only 20%, 40%, 60%
and 80% of Table 2 to simulate the performance of each model with
insufficient training data. All experiment results are obtained by repeat-
ing 10 times under the same test environment and taking the average

Advanced Engineering Informatics 56 (2023) 101949M. Ma et al.
Table 3
Performance comparison between BTAD and other models on 6 different datasets.

Dataset SMD SWaT

Model Pre Rec AUC F1 Pre Rec AUC F1

BTAD 0.9940 0.9974 0.9984 0.9957 0.9977 0.6879 0.8438 0.8143
TranAD 0.8893 0.9974 0.9923 0.9403 0.9697 0.6957 0.8462 0.8101
MAD_GAN 0.9561 0.8440 0.9720 0.8966 0.9593 0.6956 0.8456 0.8064
LSTM_NDT 0.9424 0.8428 0.9358 0.8898 0.7777 0.0108 0.5052 0.0214
MTAD_GAT 0.8258 0.9199 0.9354 0.8703 0.9760 0.6956 0.8465 0.8123
GDN 0.7169 0.9973 0.9783 0.8342 0.9696 0.6956 0.8462 0.8101
MSCRED 0.7253 0.9974 0.9596 0.8399 0.9999 0.6770 0.8385 0.8074
USAD 0.8759 0.9973 0.9633 0.9327 0.9677 0.6878 0.8438 0.8040

Dataset SMAP MBA

Model Pre Rec AUC F1 Pre Rec AUC F1

BTAD 0.8274 0.9999 0.9899 0.9056 0.9548 0.9999 0.9879 0.9769
TranAD 0.8078 1.0000 0.9885 0.8937 0.9612 0.9698 0.9787 0.9655
MAD_GAN 0.8157 0.9213 0.9789 0.8653 0.9396 0.9589 0.9706 0.9492
LSTM_NDT 0.8322 0.7326 0.8601 0.7792 0.9117 0.9423 0.9589 0.9267
MTAD_GAT 0.7517 0.9999 0.9840 0.8582 0.9012 0.9264 0.9711 0.9136
GDN 0.7892 0.9589 0.9800 0.8658 0.8441 0.9367 0.9527 0.8880
MSCRED 0.8102 0.9054 0.9569 0.8552 0.9269 0.9458 0.9702 0.9363
USAD 0.7739 0.9999 0.9827 0.8725 0.8953 0.9587 0.9700 0.9259

Dataset NAB MSDS

Model Pre Rec AUC F1 Pre Rec AUC F1

BTAD 0.8889 0.9999 0.9996 0.9412 1.0000 0.8007 0.9003 0.8893
TranAD 0.8797 0.9823 0.9540 0.9282 1.0000 0.8026 0.8925 0.8905
MAD_GAN 0.8652 0.7002 0.8462 0.7740 0.9999 0.6107 0.8053 0.7583
LSTM_NDT 0.6399 0.6666 0.8322 0.6530 0.9999 0.8005 0.8007 0.8892
MTAD_GAT 0.8408 0.7265 0.8208 0.7795 0.9999 0.7964 0.8982 0.8866
GDN 0.8088 0.7858 0.8538 0.7971 0.9989 0.7925 0.8958 0.8838
MSCRED 0.8522 0.6700 0.8402 0.7502 1.0000 0.7887 0.8826 0.8819
USAD 0.8421 0.6666 0.8329 0.7441 0.9999 0.7958 0.8979 0.8863
value to obtain statistical significance. The specific experimental results
are shown in Tables 3–6.

As seen in Table 3, the average 𝐹1 and 𝐴𝑈𝐶 value of BTAD
for the 6 datasets are 0.9205 and 0.9533. For 𝐹1, BTAD’s perfor-
mance is only slightly behind TranAD (0.8905) in MSDS dataset. For
𝐴𝑈𝐶, BTAD’s performance is only slightly behind TranAD (0.8462),
MAD_GAN (0.8456), GDN (0.8462) and MTAD_GAT (0.8465) model
in SWaT dataset, and is equal to USAD model (0.8438), while it is
ahead of other models in the remaining datasets. It is worth noting that
BTAD model has obvious performance advantages on datasets with high
dimensions and large data volumes such as SMD. This is because the
Bi-Transformer structure adopted by BTAD can effectively parallelize
anomaly detection from different dimensions for large-scale multivari-
ate time series datasets. In addition, the modified decoder structure
helps BTAD to produce reconstructed output more accurately in the
complex latent space of high-dimensional datasets without receiving
inference from the input. The performance of all models on SWaT
dataset is relatively weak due to its large scale in terms of sequence
length. Even Transformer may forget some information dependencies
between extreme long distances. Among all the comparison models,
TranAD also shows good performance on different datasets, which is
closely related to its attention mechanism and generative adversarial
training approach.

MSCRED can effectively retain time information due to the use of
continuous observations as input values. It has good performance on
partial datasets, but suffers from difficulties in identifying anomalies
close to normal tendencies and slow model inference speed. BTAD’s Bi-
Transformer architecture can effectively capture both local information
and global dependencies from different dimensions simultaneously. The
improved 2-stage training method further amplifies anomalous fea-
tures. At the same time, the Transformer in BTAD can effectively track
all inputs and capture long-term dependencies due to the introduction
of Position Encoding and residual-connection methods.

Table 4 shows the training time required for all methods to achieve
the performance in Table 3.
10
Fig. 11. Time efficiency comparison of 7 models.

As can be seen from Table 4, both BTAD and TranAD show sig-
nificant efficiency advantages compared with other models because
both use meta-learning strategies to accelerate model training. Among
the 7 models, the continuous observation input of MSCRED model
and the GRU structure of MTAD_GAT model make their operation
speed quite inefficient. In large volume datasets such as SMD, their
training time is more than 10 times slower than BTAD. Besides BTAD
and TranAD, only USAD considers the problem of time performance
optimization, but with limited effect. Therefore, although both USAD
model and MAD_GAN model adopt the generative adversarial training
method, the training time of USAD model is reduced compared with
that of MAD_GAN model. After combining the performance indexes
in Table 3 and the time efficiency in Table 4, BTAD model has the
best comprehensive performance among all 7 models. Fig. 11 shows
the results in Table 4 graphically, which better visualizes the efficiency
advantage of BTAD and TranAD.

Advanced Engineering Informatics 56 (2023) 101949M. Ma et al.

a
e
𝑃

𝑃

m
i
s
i
t
a
a
p
d
t
n
t
t
a
o
e
H
c
a
v
𝑃
s

𝑃

o
p

d
r
s

s

Table 4
Efficiency comparison between BTAD and other 7 models on different datasets.

Dataset SMD SWaT SMAP MBA NAB MSDS
Model Time (s)

BTAD 92.8881 1.7756 6.6304 5.4831 2.4167 35.9454
TranAD 100.4392 1.8986 8.0124 5.6987 2.3832 38.8586
MAD_GAN 334.8236 29.5996 30.6314 75.6603 39.7251 301.4795
LSTM_NDT 127.5400 7.4594 7.7605 19.4458 10.0636 77.8719
MTAD_GAT 1926.8700 127.8575 848.0100 334.5484 173.8848 1579.9471
GDN 951.2648 73.4518 78.7033 189.7535 99.3113 764.3773
MSCRED 3175.9200 213.3390 646.7705 559.9000 287.5003 2764.5600
USAD 262.7442 23.5435 24.0086 60.0322 31.2616 239.0076
Table 5
The 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑆𝑐𝑜𝑟𝑒 of 8 models.

Dataset SMD SWaT SMAP MBA NAB MSDS
Model PerformanceScore

BTAD 197.8685 207.9957 262.3226 441.9611 737.9964 73.3844
TranAD 134.4916 184.2652 220.1675 381.9198 527.5715 69.0333
MAD_GAN 72.6339 33.9831 106.5911 132.7052 25.8363 11.8656
LSTM_NDT 67.2877 0.0669 52.0632 157.5698 18.3284 33.1848
MTAD_GAT 38.2781 24.7213 53.4498 80.0117 16.3660 34.6769
GDN 43.9761 27.4949 84.3570 68.0892 24.8723 37.2876
MSCRED 34.5948 20.6958 46.4859 83.7710 14.0524 28.5328
USAD 89.3379 35.5388 122.5906 121.4733 21.3247 46.4681
p
S
b
f
i
v
a
o
d
i
p
p
T
g
s
t
h
t
v

5

5

f
a
a

o
t

5

p
r
e
T

In order to better and more intuitively consider the performance of
model in terms of performance and training efficiency, we propose an
valuation index using numerical fitting method, called
𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑆𝑐𝑜𝑟𝑒, which can be calculated by the following formula:

𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑆𝑐𝑜𝑟𝑒 = 𝑒(𝐴𝑈𝐶+𝐹1−1)×𝐾

log10 𝑇 𝑖𝑚𝑒
(29)

Among them, the numerator of 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑆𝑐𝑜𝑟𝑒’s calculation for-
ula adopts the exponential form in order to amplify the performance

mpact of the two evaluation indexes 𝐴𝑈𝐶 and 𝐹1. The purpose of
ubtracting 1 is that the 𝐴𝑈𝐶 and 𝐹1 values are actually meaningless
f they are lower than 0.5, because even if pure probability predic-
ion is used, the results of the corresponding 𝐴𝑈𝐶 and 𝐹1 values
re 0.5. The denominator takes a logarithm to the running time so
s to weaken the impact of time on 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑆𝑐𝑜𝑟𝑒. For exam-
le, although MTAD_GAT model runs tens of times longer on SWaT
ataset than LSTM_NDT model, its performance is much better, so
he MTAD_GAT model achieves a higher 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑆𝑐𝑜𝑟𝑒. 𝐾 in the
umerator is an adjustable parameter, whose purpose is to balance
he relationship between performance and efficiency, and can be set
o different values according to different demand scenarios. For ex-
mple, in a scenario with high performance requirements, the value
f parameter 𝐾 should be increased, while in a scenario with high
fficiency requirements, the value of parameter 𝐾 should be decreased.
ere we set 𝐾 to 6. 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑆𝑐𝑜𝑟𝑒 can effectively consider the
omprehensive capabilities of a model in terms of both performance
nd efficiency. For example, MTAD_GAT model and GDN model have
ery similar performance on SWaT dataset, but GDN model has a higher
𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑆𝑐𝑜𝑟𝑒 because the training time of GDN model is much

horter than MTAD_GAT model.
Combining data in Tables 3 and 4, the results of all models under

𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑆𝑐𝑜𝑟𝑒 evaluation index are shown in Table 5.
Table 5 also support the previous performance analysis conclusions

f different models based on the data in Tables 3 and 4. BTAD is the
erformance leader among all models.

Table 6 shows the performance of each model with 20% training
ata volume. Here, we choose SWaT and SMAP dataset as examples to
epresent the performance of each model in large-scale datasets with
harply reduced data volumes.

As can be seen from Table 6, when the amount of data in the train
11

et decreases sharply, 6 comparison models show different degrees of r
erformance degradation. The performance of LSTM_NDT model on
MAP dataset decreases most significantly, 𝐴𝑈𝐶 and 𝐹1 decreases
y 18.54% and 30.48% respectively. BTAD model has almost no per-
ormance degradation on the SWaT dataset, and even has a slight
mprovement in 𝐴𝑈𝐶 compared with the results of 100% training data
olume, which can almost be considered as a data fluctuation. BTAD
lso performs well on SMAP dataset, with the performance degradation
f less than 0.5% for both 𝐴𝑈𝐶 and 𝐹1. The improved MAML dataset
ivision strategy allows BTAD to quickly learn the anomalous features
n sequence data with a small data volume, which shows its high
erformance even with limited data. With 20% of training data, the
erformance of USAD and TranAD model are the closest to BTAD.
his is inseparable from the idea that both USAD and TranAD use the
enerative adversarial training approach to train the Encoder–Decoder
tructure, which further improve the learning ability, thus enabling
hem to perform well on a smaller amount of data. But in general, BTAD
as the best comprehensive performance among all methods, both in
he complete training dataset and in the training dataset with 20% data
olume.

. BTAD model analysis and discussion

.1. Comparative analysis

We evaluate the BTAD model using self-attention at the decoder (re-
er to 𝑀𝑜𝑑𝑒𝑙1) and the BTAD model using Encoder–Decoder attention
t the decoder (refer to 𝑀𝑜𝑑𝑒𝑙2) with SWaT and SMAP datasets at 20%
nd 100% data volumes respectively, the results are shown in Table 7.

In different test environments, 𝑀𝑜𝑑𝑒𝑙2 shows different magnitudes
f performance degradation compared to 𝑀𝑜𝑑𝑒𝑙1, which also confirms
he discussion in Section 3.2.2.

.2. Ablation analysis

In the ablation analysis section, in order to investigate the im-
ortance of each component in BTAD model, we use the methods of
emoving the self-conditioning mechanism of BTAD, removing the gen-
rative adversarial training method of BTAD, and only using the basic
ransformer model (i.e., removing the self-conditioning mechanism,

emoving the Bi-Transformer architecture, removing the generative

Advanced Engineering Informatics 56 (2023) 101949M. Ma et al.

a
h
a
a

T
b
m
t
d
w
p
d
c

5

5

B
i
w
t
8
I
a
t

5

B
r

Table 6
The performance of each model at 20% training data.

Dataset SWaT SMAP

Model Pre Rec AUC F1 Pre Rec AUC F1

BTAD 0.9676 0.6957 0.8461 0.8094 0.8202 0.9999 0.9894 0.9012
TranAD 0.9310 0.6946 0.8405 0.7956 0.7897 0.9726 0.9790 0.8717
MAD_GAN 0.9218 0.6944 0.8405 0.7921 0.7965 0.9011 0.9554 0.8456
LSTM_NDT 0.7214 0.0108 0.5014 0.0213 0.7917 0.4117 0.7006 0.5417
MTAD_GAT 0.9017 0.6756 0.8404 0.7724 0.7164 0.9999 0.9809 0.8348
GDN 0.9334 0.6656 0.8217 0.7771 0.7324 0.9577 0.9463 0.8300
MSCRED 0.9199 0.6456 0.8133 0.7587 0.7849 0.8988 0.9150 0.8380
USAD 0.9455 0.6823 0.8410 0.7926 0.7551 0.9999 0.9798 0.8604
Table 7
Comparative analysis results.
Dataset SWaT (100% data volume) SMAP (100% data volume)

Model Pre Rec AUC F1 Pre Rec AUC F1

𝑀𝑜𝑑𝑒𝑙1 0.9977 0.6879 0.8438 0.8143 0.8274 0.9999 0.9899 0.9056
𝑀𝑜𝑑𝑒𝑙2 0.9798 0.6724 0.8327 0.7975 0.8034 0.9731 0.9855 0.8801

Dataset SWaT (20% data volume) SMAP (20% data volume)

Model Pre Rec AUC F1 Pre Rec AUC F1

𝑀𝑜𝑑𝑒𝑙1 0.9676 0.6957 0.8461 0.8094 0.8202 0.9999 0.9894 0.9012
𝑀𝑜𝑑𝑒𝑙2 0.9442 0.6701 0.8285 0.7839 0.7977 0.9691 0.9853 0.8751
Table 8
The comparison results of ablation analysis.

Dataset SMD NAB

Model AUC F1 AUC F1

BTAD 0.9984 0.9957 0.9996 0.9412
BTAD (without self-conditioning) 0.9910 0.9294 0.9780 0.9230
BTAD (without adversarial) 0.9932 0.9487 0.8330 0.7442
BTAD (original Transformer) 0.9761 0.8200 0.8329 0.7441

dversarial training method and using a fixed number of attention
eads) for comparison experiments. We take SMD and NAB datasets
s examples to illustrate with 𝐴𝑈𝐶 and 𝐹1 evaluation indexes. Results
re shown in Table 8.

In Table 8, compared with BTAD, the 𝐴𝑈𝐶 and 𝐹1 of the basic
ransformer structure on SMD dataset and NAB dataset decreases
y 2.23%, 17.65%, 16.68% and 20.94% respectively. When we re-
ove the self-conditioning mechanism and the generative adversarial

raining method, BTAD also shows different degrees of performance
egradation. In the NAB dataset, the performance of BTAD model
ithout generative adversarial training decreases significantly, and the
erformance is almost the same as the original Transformer model, in-
icating that both adversarial training and self-conditioning mechanism
ontribute to BTAD. More results are shown in Fig. 14.

.3. Sensitivity analysis

.3.1. Sensitivity to data volume
In Table 6, the experimental results of SWaT and SMAP show that

TAD model performance is almost insensitive to the dataset size and
s capable of anomaly detection on small-scale datasets. In Fig. 12,
e further show the results of 𝐹1, 𝐴𝑈𝐶 evaluation indexes versus

raining time for BTAD and 3 comparison models at 20%, 40%, 60%,
0% and 100% data volumes, taking the NAB dataset as an example.
t can be seen that BTAD has higher anomaly detection performance
nd better time efficiency at all dataset scales, which again supports
he superiority of improved MAML methods in BTAD.

.3.2. Sensitivity to training epochs
Taking SMD dataset as an example, we analyze the performance of

TAD model when the number of training epochs is 1–10. The specific
esults are shown in Table 9.
12
Fig. 12. 𝐴𝑈𝐶, 𝐹1 and training time of BTAD versus comparison models for different
dataset sizes.

Table 9
Relationship between the number of training epochs and the performance of BTAD
model under SMD dataset.

Epochs Pre Rec AUC F1

1 0.0000 0.0000 0.5 0.0000
2 0.9008 0.9973 0.9930 0.9466
3 0.9278 0.9974 0.9947 0.9613
4 0.9630 0.9974 0.9967 0.9799
5 0.9940 0.9974 0.9984 0.9957
6 0.9992 0.9974 0.9986 0.9983
7 0.9992 0.9974 0.9986 0.9983
8 0.9992 0.9974 0.9986 0.9983
9 0.9992 0.9974 0.9986 0.9983
10 0.9992 0.9974 0.9986 0.9983

As can be seen from Table 9, except for the extreme case where
the BTAD model is unable to effectively adjust the model weights
during the first training epoch, BTAD model can achieve high anomaly
detection performance within a short number of training epochs, and
the model performance has stabilized when the number of training
epochs exceeds 6. This is due to the self-conditioning approach and
modified 2-stage generative adversarial training method of BTAD, in
which Stage 2 training process will amplify the training loss of Stage 1,
so as to timely optimize the weight parameters of neural networks in
the model. Alternating update strategy further accelerates the model
weight adjustment. Table 9 also shows that the number of training
epochs should be generally set at 5–6 epochs when applying BTAD
model for anomaly detection tasks. Too few training epochs will not
allow the model to be fully trained, and too many training epochs
will only cause additional resource consumption and reduce the time

Advanced Engineering Informatics 56 (2023) 101949M. Ma et al.
Fig. 13. The relationship between BTAD model performance and the number of
training epochs.

Table 10
Relationship between window size and BTAD model performance under SMD dataset.

Window size Pre Rec AUC F1 Time (s)

5 0.9921 0.9974 0.9983 0.9948 48.5273
10 0.9940 0.9974 0.9984 0.9957 92.8881
13 0.9936 0.9974 0.9983 0.9955 131.9831
15 0.9907 0.9974 0.9982 0.9940 178.0146
17 0.9866 0.9974 0.9980 0.9920 195.0223

Fig. 14. 𝐹1, 𝐴𝑈𝐶 and training time of BTAD and its variants at different window
sizes.

efficiency of BTAD model. Therefore, we set the number of training
epochs in the previous comparison experiments as 5. Fig. 13 illustrates
this fact more visually in graphical form:

5.3.3. Sensitivity to sliding window size
Similarly to Table 9, we investigate the impact of sliding win-

dow size on BTAD model performance, and the results are shown in
Table 10.

As seen in Table 10 that the sliding window size has an impact on
both the performance and time efficiency of BTAD model. When the
window is small, the model inference takes less time and the training
efficiency is higher. However, too small sliding window will lose a
large amount of contextual information, which will lead to performance
degradation. If the window is too large, it will not only increase the
computational effort of model inference, reduce the training efficiency,
but also increase the usage of hardware resources. More critically,
too large sliding window may cause some short sequence anomalies
to be included in the complete window sequence, which cannot be
effectively identified by the model and lead to performance degrada-
tion. Therefore, considering both time efficiency and performance, we
finally choose a sliding window of size 10, which provides a reasonable
balance between the two. We show the performance of BTAD and its
ablation variant models with different window sizes in Fig. 14.
13
5.4. Limitations of proposed method

The above experiments and analysis illustrate that BTAD has effi-
cient and highly accurate anomaly detection performance. However,
BTAD also has application limitations. Transformer itself suffers from
excessive performance overhead and system resource consumption,
and the Bi-Transformer architecture of BTAD further amplifies this
disadvantage. Therefore, the deployment of BTAD may be limited on
edge computing platforms with scarce computing resources and weak
computility. BTAD needs to complete training and save model files on
high computing power platforms (i.e., servers, computing clusters) in
advance before deploying to edge devices.

6. Conclusion

We propose a universal Bi-Transformer based anomaly detection
model BTAD, which can detect anomalies in multivariate time series
data. The Bi-Transformer structure of BTAD can parallelize the anomaly
inference on the dataset from two different dimensions. The results
of ablation analysis also show that the adaptive multi-head attention
mechanism, the generative adversarial training approach and the self-
conditioning mechanism effectively improve the anomaly detection
performance of BTAD. Improved MAML strategies optimize the per-
formance of BTAD on small scale datasets while improving the model
training efficiency. Experiments show that BTAD model improves 𝐹1
by more than 5% and reduce the training time by more than 7%
compared to other SOTA methods on large scale datasets such as
SMD. Therefore, BTAD model can meet the requirements of rapid,
accurate and unsupervised anomaly detection tasks in modern indus-
trial systems, and has practical application value. We also put forward
the 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑆𝑐𝑜𝑟𝑒 evaluation index, which can comprehensively
measure the overall capability of a model in terms of performance and
efficiency.

In the future, we will look for ways to further improve the detection
performance of BTAD and explore how to reduce the performance
overhead of the Bi-Transformer structure, such as using Informer [62]
model with low computational complexity.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

The authors thank the anonymous reviewers for their insightful
suggestions on this work.

References

[1] X. He, K. Zhao, X. Chu, AutoML: A survey of the state-of-the-art, Knowl.-Based
Syst. 212 (2021) 106622, http://dx.doi.org/10.1016/j.knosys.2020.106622.

[2] S. Thudumu, P. Branch, J. Jin, J.J. Singh, A comprehensive survey of anomaly
detection techniques for high dimensional big data, J. Big Data 7 (1) (2020)
1–30, http://dx.doi.org/10.1186/s40537-020-00320-x.

[3] J. Bellendorf, Z.Á. Mann, Classification of optimization problems in fog com-
puting, Future Gener. Comput. Syst. 107 (2020) 158–176, http://dx.doi.org/10.
1016/j.future.2020.01.036.

[4] J. Zhou, B. Zhang, L. Fan, Z. Lu, Aeromagnetic anomaly detection under low
SNR conditions using multiscale wavelet energy accumulation, in: 2020 IEEE
20th International Conference on Communication Technology, ICCT, IEEE, 2020,
pp. 1641–1644, http://dx.doi.org/10.1109/ICCT50939.2020.9295710.

http://dx.doi.org/10.1016/j.knosys.2020.106622
http://dx.doi.org/10.1186/s40537-020-00320-x
http://dx.doi.org/10.1016/j.future.2020.01.036
http://dx.doi.org/10.1016/j.future.2020.01.036
http://dx.doi.org/10.1016/j.future.2020.01.036
http://dx.doi.org/10.1109/ICCT50939.2020.9295710

Advanced Engineering Informatics 56 (2023) 101949M. Ma et al.
[5] E.J. Son, W. Kim, Y.-M. Kim, J. McIver, J.J. Oh, S.H. Oh, Time series anomaly
detection for gravitational-wave detectors based on the Hilbert–Huang transform,
J. Korean Phys. Soc. 78 (10) (2021) 878–885, http://dx.doi.org/10.1007/s40042-
021-00094-2.

[6] H. Abbasimehr, M. Shabani, M. Yousefi, An optimized model using LSTM
network for demand forecasting, Comput. Ind. Eng. 143 (2020) 106435, http:
//dx.doi.org/10.1016/j.cie.2020.106435.

[7] Y. Jin, C. Qiu, L. Sun, X. Peng, J. Zhou, Anomaly detection in time series
via robust PCA, in: 2017 2nd IEEE International Conference on Intelligent
Transportation Engineering, ICITE, IEEE, 2017, pp. 352–355, http://dx.doi.org/
10.1109/ICITE.2017.8056937.

[8] D. Zang, J. Liu, H. Wang, Markov chain-based feature extraction for anomaly
detection in time series and its industrial application, in: 2018 Chinese Control
and Decision Conference, CCDC, IEEE, 2018, pp. 1059–1063, http://dx.doi.org/
10.1109/CCDC.2018.8407286.

[9] W. Hu, J. Gao, B. Li, O. Wu, J. Du, S. Maybank, Anomaly detection using local
kernel density estimation and context-based regression, IEEE Trans. Knowl. Data
Eng. 32 (2) (2018) 218–233, http://dx.doi.org/10.1109/TKDE.2018.2882404.

[10] E.H. Budiarto, A.E. Permanasari, S. Fauziati, Unsupervised anomaly detection
using K-means, local outlier factor and one class SVM, in: 2019 5th International
Conference on Science and Technology, Vol. 1, ICST, IEEE, 2019, pp. 1–5,
http://dx.doi.org/10.1109/ICST47872.2019.9166366.

[11] M.T. Hagan, H.B. Demuth, M. Beale, Neural Network Design, PWS Publishing
Co., 1997.

[12] O.I. Provotar, Y.M. Linder, M.M. Veres, Unsupervised anomaly detection in time
series using lstm-based autoencoders, in: 2019 IEEE International Conference
on Advanced Trends in Information Theory, ATIT, IEEE, 2019, pp. 513–517,
http://dx.doi.org/10.1109/ATIT49449.2019.9030505.

[13] Z. Qu, L. Su, X. Wang, S. Zheng, X. Song, X. Song, A unsupervised learning
method of anomaly detection using gru, in: 2018 IEEE International Conference
on Big Data and Smart Computing, BigComp, IEEE, 2018, pp. 685–688, http:
//dx.doi.org/10.1109/BigComp.2018.00126.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser,
I. Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst. 30 (2017)
http://dx.doi.org/10.48550/arXiv.1706.03762.

[15] S. Tuli, G. Casale, N.R. Jennings, TranAD: Deep transformer networks for
anomaly detection in multivariate time series data, Proc. VLDB 15 (6) (2022)
1201–1214.

[16] G. Mbiydzenyuy, Univariate time series anomaly labelling algorithm, in: In-
ternational Conference on Machine Learning, Optimization, and Data Science,
Springer, 2020, pp. 586–599, http://dx.doi.org/10.1007/978-3-030-64580-9_48.

[17] A. Deng, B. Hooi, Graph neural network-based anomaly detection in multivariate
time series, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol.
35, No. 5, 2021, pp. 4027–4035, http://dx.doi.org/10.1609/aaai.v35i5.16523.

[18] H. Zhao, Y. Wang, J. Duan, C. Huang, D. Cao, Y. Tong, B. Xu, J. Bai, J. Tong, Q.
Zhang, Multivariate time-series anomaly detection via graph attention network,
in: 2020 IEEE International Conference on Data Mining, ICDM, IEEE, 2020, pp.
841–850, http://dx.doi.org/10.1109/ICDM50108.2020.00093.

[19] A. Patcha, J.-M. Park, An overview of anomaly detection techniques: Exist-
ing solutions and latest technological trends, Comput. Netw. 51 (12) (2007)
3448–3470, http://dx.doi.org/10.1016/j.comnet.2007.02.001.

[20] P. Boniol, T. Palpanas, M. Meftah, E. Remy, Graphan: Graph-based subsequence
anomaly detection, Proc. VLDB Endow. 13 (12) (2020) 2941–2944, http://dx.
doi.org/10.14778/3415478.3415514.

[21] F.T. Liu, K.M. Ting, Z.-H. Zhou, Isolation forest, in: 2008 Eighth Ieee Interna-
tional Conference on Data Mining, IEEE, 2008, pp. 413–422, http://dx.doi.org/
10.1109/ICDM.2008.17.

[22] T.R. Bandaragoda, K.M. Ting, D. Albrecht, F.T. Liu, J.R. Wells, Efficient anomaly
detection by isolation using nearest neighbour ensemble, in: 2014 IEEE In-
ternational Conference on Data Mining Workshop, IEEE, 2014, pp. 698–705,
http://dx.doi.org/10.1109/ICDMW.2014.70.

[23] A.H. Yaacob, I.K. Tan, S.F. Chien, H.K. Tan, Arima based network anomaly
detection, in: 2010 Second International Conference on Communication Software
and Networks, IEEE, 2010, pp. 205–209, http://dx.doi.org/10.1109/ICCSN.2010.
55.

[24] O. Salem, A. Guerassimov, A. Mehaoua, A. Marcus, B. Furht, Anomaly detection
in medical wireless sensor networks using SVM and linear regression models, Int.
J. E-Health Med. Commun. (IJEHMC) 5 (1) (2014) 20–45, http://dx.doi.org/10.
4018/ijehmc.2014010102.

[25] Y. Wang, N. Masoud, A. Khojandi, Real-time sensor anomaly detection and
recovery in connected automated vehicle sensors, IEEE Trans. Intell. Transp. Syst.
22 (3) (2020) 1411–1421, http://dx.doi.org/10.1109/TITS.2020.2970295.

[26] P. Boniol, J. Paparrizos, T. Palpanas, M.J. Franklin, SAND: streaming subsequence
anomaly detection, Proc. VLDB Endow. 14 (10) (2021) 1717–1729, http://dx.
doi.org/10.14778/3467861.3467863.

[27] L. Tran, M.Y. Mun, C. Shahabi, Real-time distance-based outlier detection in
data streams, Proc. VLDB Endow. 14 (2) (2020) 141–153, http://dx.doi.org/10.
14778/3425879.3425885.

[28] K. Kingsbury, P. Alvaro, Elle: Inferring isolation anomalies from experimental ob-
servations, 2020, http://dx.doi.org/10.48550/arXiv.2003.10554, arXiv preprint
arXiv:2003.10554.
14
[29] W. Shang, J. Cui, C. Song, J. Zhao, P. Zeng, Research on industrial control
anomaly detection based on FCM and SVM, in: 2018 17th IEEE International Con-
ference on Trust, Security and Privacy in Computing and Communications/12th
IEEE International Conference on Big Data Science and Engineering, Trust-
Com/BigDataSE, IEEE, 2018, pp. 218–222, http://dx.doi.org/10.1109/TrustCom/
BigDataSE.2018.00042.

[30] H.S. Dhiman, D. Deb, S. Muyeen, I. Kamwa, Wind turbine gearbox anomaly
detection based on adaptive threshold and twin support vector machines, IEEE
Trans. Energy Convers. 36 (4) (2021) 3462–3469, http://dx.doi.org/10.1109/
TEC.2021.3075897.

[31] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, T. Soderstrom, Detecting
spacecraft anomalies using lstms and nonparametric dynamic thresholding, in:
Proceedings of the 24th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, 2018, pp. 387–395, http://dx.doi.org/10.1145/
3219819.3219845.

[32] G. Zhu, H. Zhao, H. Liu, H. Sun, A novel LSTM-GAN algorithm for time
series anomaly detection, in: 2019 Prognostics and System Health Management
Conference, PHM-Qingdao, IEEE, 2019, pp. 1–6, http://dx.doi.org/10.1109/
PHM-Qingdao46334.2019.8942842.

[33] H.-S. Nam, Y.-K. Jeong, J.W. Park, An anomaly detection scheme based on
lstm autoencoder for energy management, in: 2020 International Conference on
Information and Communication Technology Convergence, ICTC, IEEE, 2020, pp.
1445–1447, http://dx.doi.org/10.1109/ICTC49870.2020.9289226.

[34] B. Zong, Q. Song, M.R. Min, W. Cheng, C. Lumezanu, D. Cho, H. Chen,
Deep autoencoding gaussian mixture model for unsupervised anomaly detection,
in: International Conference on Learning Representations, 2018, URL https:
//openreview.net/forum?id=BJJLHbb0-.

[35] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, D. Pei, Robust anomaly detection
for multivariate time series through stochastic recurrent neural network, in:
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2019, pp. 2828–2837, http://dx.doi.org/10.1145/
3292500.3330672.

[36] C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni, B. Zong, H.
Chen, N.V. Chawla, A deep neural network for unsupervised anomaly detection
and diagnosis in multivariate time series data, in: Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 33, No. 01, 2019, pp. 1409–1416,
http://dx.doi.org/10.1609/aaai.v33i01.33011409.

[37] D. Li, D. Chen, B. Jin, L. Shi, J. Goh, S.-K. Ng, MAD-GAN: Multivariate
anomaly detection for time series data with generative adversarial networks,
in: International Conference on Artificial Neural Networks, Springer, 2019, pp.
703–716, http://dx.doi.org/10.1007/978-3-030-30490-4_56.

[38] Y. Zhang, Y. Chen, J. Wang, Z. Pan, Unsupervised deep anomaly detection
for multi-sensor time-series signals, IEEE Trans. Knowl. Data Eng. (2021) http:
//dx.doi.org/10.1109/TKDE.2021.3102110.

[39] J. Audibert, P. Michiardi, F. Guyard, S. Marti, M.A. Zuluaga, Usad: Unsupervised
anomaly detection on multivariate time series, in: Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020,
pp. 3395–3404, http://dx.doi.org/10.1145/3394486.3403392.

[40] G. Li, X. Zhou, J. Sun, X. Yu, Y. Han, L. Jin, W. Li, T. Wang, S. Li, Opengauss:
An autonomous database system, Proc. VLDB Endow. 14 (12) (2021) 3028–3042,
http://dx.doi.org/10.14778/3476311.3476380.

[41] S. Huang, Y. Liu, C. Fung, R. He, Y. Zhao, H. Yang, Z. Luan, Hitanomaly:
Hierarchical transformers for anomaly detection in system log, IEEE Trans. Netw.
Serv. Manag. 17 (4) (2020) 2064–2076, http://dx.doi.org/10.1109/TNSM.2020.
3034647.

[42] H. Guo, S. Yuan, X. Wu, Logbert: Log anomaly detection via bert, in: 2021
International Joint Conference on Neural Networks, IJCNN, IEEE, 2021, pp. 1–8,
http://dx.doi.org/10.1109/IJCNN52387.2021.9534113.

[43] M. Fält, S. Forsström, T. Zhang, Machine learning based anomaly detection of
log files using ensemble learning and self-attention, in: 2021 5th International
Conference on System Reliability and Safety, ICSRS, IEEE, 2021, pp. 209–215,
http://dx.doi.org/10.1109/ICSRS53853.2021.9660694.

[44] S.R. Wibisono, A.I. Kistijantoro, Log anomaly detection using adaptive universal
transformer, in: 2019 International Conference of Advanced Informatics: Con-
cepts, Theory and Applications, ICAICTA, IEEE, 2019, pp. 1–6, http://dx.doi.
org/10.1109/ICAICTA.2019.8904299.

[45] H. Mori, S. Tamura, S. Hayamizu, Anomalous sound detection based on
attention mechanism, in: 2021 29th European Signal Processing Conference,
EUSIPCO, IEEE, 2021, pp. 581–585, http://dx.doi.org/10.23919/EUSIPCO54536.
2021.9616201.

[46] C. Zhang, X. Wang, H. Zhang, H. Zhang, P. Han, Log sequence anomaly detection
based on local information extraction and globally sparse transformer model,
IEEE Trans. Netw. Serv. Manag. 18 (4) (2021) 4119–4133, http://dx.doi.org/10.
1109/TNSM.2021.3125967.

[47] H. Yuan, Z. Cai, H. Zhou, Y. Wang, X. Chen, TransAnomaly: Video anomaly
detection using video vision transformer, IEEE Access 9 (2021) 123977–123986,
http://dx.doi.org/10.1109/ACCESS.2021.3109102.

[48] Z. Chen, D. Chen, X. Zhang, Z. Yuan, X. Cheng, Learning graph structures with
transformer for multivariate time series anomaly detection in iot, IEEE Internet
Things J. (2021) http://dx.doi.org/10.1109/JIOT.2021.3100509.

http://dx.doi.org/10.1007/s40042-021-00094-2
http://dx.doi.org/10.1007/s40042-021-00094-2
http://dx.doi.org/10.1007/s40042-021-00094-2
http://dx.doi.org/10.1016/j.cie.2020.106435
http://dx.doi.org/10.1016/j.cie.2020.106435
http://dx.doi.org/10.1016/j.cie.2020.106435
http://dx.doi.org/10.1109/ICITE.2017.8056937
http://dx.doi.org/10.1109/ICITE.2017.8056937
http://dx.doi.org/10.1109/ICITE.2017.8056937
http://dx.doi.org/10.1109/CCDC.2018.8407286
http://dx.doi.org/10.1109/CCDC.2018.8407286
http://dx.doi.org/10.1109/CCDC.2018.8407286
http://dx.doi.org/10.1109/TKDE.2018.2882404
http://dx.doi.org/10.1109/ICST47872.2019.9166366
http://refhub.elsevier.com/S1474-0346(23)00077-0/sb11
http://refhub.elsevier.com/S1474-0346(23)00077-0/sb11
http://refhub.elsevier.com/S1474-0346(23)00077-0/sb11
http://dx.doi.org/10.1109/ATIT49449.2019.9030505
http://dx.doi.org/10.1109/BigComp.2018.00126
http://dx.doi.org/10.1109/BigComp.2018.00126
http://dx.doi.org/10.1109/BigComp.2018.00126
http://dx.doi.org/10.48550/arXiv.1706.03762
http://refhub.elsevier.com/S1474-0346(23)00077-0/sb15
http://refhub.elsevier.com/S1474-0346(23)00077-0/sb15
http://refhub.elsevier.com/S1474-0346(23)00077-0/sb15
http://refhub.elsevier.com/S1474-0346(23)00077-0/sb15
http://refhub.elsevier.com/S1474-0346(23)00077-0/sb15
http://dx.doi.org/10.1007/978-3-030-64580-9_48
http://dx.doi.org/10.1609/aaai.v35i5.16523
http://dx.doi.org/10.1109/ICDM50108.2020.00093
http://dx.doi.org/10.1016/j.comnet.2007.02.001
http://dx.doi.org/10.14778/3415478.3415514
http://dx.doi.org/10.14778/3415478.3415514
http://dx.doi.org/10.14778/3415478.3415514
http://dx.doi.org/10.1109/ICDM.2008.17
http://dx.doi.org/10.1109/ICDM.2008.17
http://dx.doi.org/10.1109/ICDM.2008.17
http://dx.doi.org/10.1109/ICDMW.2014.70
http://dx.doi.org/10.1109/ICCSN.2010.55
http://dx.doi.org/10.1109/ICCSN.2010.55
http://dx.doi.org/10.1109/ICCSN.2010.55
http://dx.doi.org/10.4018/ijehmc.2014010102
http://dx.doi.org/10.4018/ijehmc.2014010102
http://dx.doi.org/10.4018/ijehmc.2014010102
http://dx.doi.org/10.1109/TITS.2020.2970295
http://dx.doi.org/10.14778/3467861.3467863
http://dx.doi.org/10.14778/3467861.3467863
http://dx.doi.org/10.14778/3467861.3467863
http://dx.doi.org/10.14778/3425879.3425885
http://dx.doi.org/10.14778/3425879.3425885
http://dx.doi.org/10.14778/3425879.3425885
http://dx.doi.org/10.48550/arXiv.2003.10554
http://arxiv.org/abs/2003.10554
http://dx.doi.org/10.1109/TrustCom/BigDataSE.2018.00042
http://dx.doi.org/10.1109/TrustCom/BigDataSE.2018.00042
http://dx.doi.org/10.1109/TrustCom/BigDataSE.2018.00042
http://dx.doi.org/10.1109/TEC.2021.3075897
http://dx.doi.org/10.1109/TEC.2021.3075897
http://dx.doi.org/10.1109/TEC.2021.3075897
http://dx.doi.org/10.1145/3219819.3219845
http://dx.doi.org/10.1145/3219819.3219845
http://dx.doi.org/10.1145/3219819.3219845
http://dx.doi.org/10.1109/PHM-Qingdao46334.2019.8942842
http://dx.doi.org/10.1109/PHM-Qingdao46334.2019.8942842
http://dx.doi.org/10.1109/PHM-Qingdao46334.2019.8942842
http://dx.doi.org/10.1109/ICTC49870.2020.9289226
https://openreview.net/forum?id=BJJLHbb0-
https://openreview.net/forum?id=BJJLHbb0-
https://openreview.net/forum?id=BJJLHbb0-
http://dx.doi.org/10.1145/3292500.3330672
http://dx.doi.org/10.1145/3292500.3330672
http://dx.doi.org/10.1145/3292500.3330672
http://dx.doi.org/10.1609/aaai.v33i01.33011409
http://dx.doi.org/10.1007/978-3-030-30490-4_56
http://dx.doi.org/10.1109/TKDE.2021.3102110
http://dx.doi.org/10.1109/TKDE.2021.3102110
http://dx.doi.org/10.1109/TKDE.2021.3102110
http://dx.doi.org/10.1145/3394486.3403392
http://dx.doi.org/10.14778/3476311.3476380
http://dx.doi.org/10.1109/TNSM.2020.3034647
http://dx.doi.org/10.1109/TNSM.2020.3034647
http://dx.doi.org/10.1109/TNSM.2020.3034647
http://dx.doi.org/10.1109/IJCNN52387.2021.9534113
http://dx.doi.org/10.1109/ICSRS53853.2021.9660694
http://dx.doi.org/10.1109/ICAICTA.2019.8904299
http://dx.doi.org/10.1109/ICAICTA.2019.8904299
http://dx.doi.org/10.1109/ICAICTA.2019.8904299
http://dx.doi.org/10.23919/EUSIPCO54536.2021.9616201
http://dx.doi.org/10.23919/EUSIPCO54536.2021.9616201
http://dx.doi.org/10.23919/EUSIPCO54536.2021.9616201
http://dx.doi.org/10.1109/TNSM.2021.3125967
http://dx.doi.org/10.1109/TNSM.2021.3125967
http://dx.doi.org/10.1109/TNSM.2021.3125967
http://dx.doi.org/10.1109/ACCESS.2021.3109102
http://dx.doi.org/10.1109/JIOT.2021.3100509

Advanced Engineering Informatics 56 (2023) 101949M. Ma et al.
[49] Y. Li, X. Peng, J. Zhang, Z. Li, M. Wen, DCT-GAN: Dilated convolutional
transformer-based GAN for time series anomaly detection, IEEE Trans. Knowl.
Data Eng. (2021) http://dx.doi.org/10.1109/TKDE.2021.3130234.

[50] Y. Liu, S. Pan, Y.G. Wang, F. Xiong, L. Wang, Q. Chen, V.C. Lee, Anomaly
detection in dynamic graphs via transformer, IEEE Trans. Knowl. Data Eng.
(2021) http://dx.doi.org/10.1109/TKDE.2021.3124061.

[51] S. Shakya, S. Sigdel, An approach to develop a hybrid algorithm based on support
vector machine and Naive Bayes for anomaly detection, in: 2017 International
Conference on Computing, Communication and Automation, ICCCA, IEEE, 2017,
pp. 323–327, http://dx.doi.org/10.1109/CCAA.2017.8229836.

[52] S. Kanarachos, J. Mathew, A. Chroneos, M. Fitzpatrick, Anomaly detection in
time series data using a combination of wavelets, neural networks and Hilbert
transform, in: 2015 6th International Conference on Information, Intelligence,
Systems and Applications, IISA, IEEE, 2015, pp. 1–6, http://dx.doi.org/10.1109/
IISA.2015.7388055.

[53] D. Cheng, S. Xiang, C. Shang, Y. Zhang, F. Yang, L. Zhang, Spatio-temporal
attention-based neural network for credit card fraud detection, in: Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 01, 2020, pp.
362–369, http://dx.doi.org/10.1609/aaai.v34i01.5371.

[54] F. Carcillo, Y.-A. Le Borgne, O. Caelen, Y. Kessaci, F. Oblé, G. Bontempi,
Combining unsupervised and supervised learning in credit card fraud detection,
Inform. Sci. 557 (2021) 317–331, http://dx.doi.org/10.1016/j.ins.2019.05.042.

[55] I. Guyon, et al., A scaling law for the validation-set training-set size ratio, AT&T
Bell Lab. 1 (11) (1997).
15
[56] J. Alammar, The illustrated transformer, 2018, https://jalammar.github.io/
illustrated-transformer/. (Accessed 29 December 2022).

[57] C. Finn, P. Abbeel, S. Levine, Model-agnostic meta-learning for fast adaptation of
deep networks, in: International Conference on Machine Learning, PMLR, 2017,
pp. 1126–1135, URL https://proceedings.mlr.press/v70/finn17a.html.

[58] A.P. Mathur, N.O. Tippenhauer, SWaT: A water treatment testbed for research
and training on ICS security, in: 2016 International Workshop on Cyber-Physical
Systems for Smart Water Networks, CySWater, IEEE, 2016, pp. 31–36, http:
//dx.doi.org/10.1109/CySWater.2016.7469060.

[59] G.B. Moody, R.G. Mark, The impact of the MIT-BIH arrhythmia database,
IEEE Eng. Med. Biol. Mag. 20 (3) (2001) 45–50, http://dx.doi.org/10.1109/51.
932724.

[60] S. Ahmad, A. Lavin, S. Purdy, Z. Agha, Unsupervised real-time anomaly detection
for streaming data, Neurocomputing 262 (2017) 134–147, http://dx.doi.org/10.
1016/j.neucom.2017.04.070.

[61] S. Nedelkoski, J. Bogatinovski, A.K. Mandapati, S. Becker, J. Cardoso, O. Kao,
Multi-source distributed system data for ai-powered analytics, in: European
Conference on Service-Oriented and Cloud Computing, Springer, 2020, pp.
161–176, http://dx.doi.org/10.1007/978-3-030-44769-4_13.

[62] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, W. Zhang, Informer: Beyond
efficient transformer for long sequence time-series forecasting, in: Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 35, No. 12, 2021, pp.
11106–11115, http://dx.doi.org/10.1609/aaai.v35i12.17325.

http://dx.doi.org/10.1109/TKDE.2021.3130234
http://dx.doi.org/10.1109/TKDE.2021.3124061
http://dx.doi.org/10.1109/CCAA.2017.8229836
http://dx.doi.org/10.1109/IISA.2015.7388055
http://dx.doi.org/10.1109/IISA.2015.7388055
http://dx.doi.org/10.1109/IISA.2015.7388055
http://dx.doi.org/10.1609/aaai.v34i01.5371
http://dx.doi.org/10.1016/j.ins.2019.05.042
http://refhub.elsevier.com/S1474-0346(23)00077-0/sb55
http://refhub.elsevier.com/S1474-0346(23)00077-0/sb55
http://refhub.elsevier.com/S1474-0346(23)00077-0/sb55
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://proceedings.mlr.press/v70/finn17a.html
http://dx.doi.org/10.1109/CySWater.2016.7469060
http://dx.doi.org/10.1109/CySWater.2016.7469060
http://dx.doi.org/10.1109/CySWater.2016.7469060
http://dx.doi.org/10.1109/51.932724
http://dx.doi.org/10.1109/51.932724
http://dx.doi.org/10.1109/51.932724
http://dx.doi.org/10.1016/j.neucom.2017.04.070
http://dx.doi.org/10.1016/j.neucom.2017.04.070
http://dx.doi.org/10.1016/j.neucom.2017.04.070
http://dx.doi.org/10.1007/978-3-030-44769-4_13
http://dx.doi.org/10.1609/aaai.v35i12.17325

	BTAD: A binary transformer deep neural network model for anomaly detection in multivariate time series data
	Backgrounds and motivations
	Related work
	Methods based on statistics
	Methods based on machine learning
	Methods based on neural network and deep learning
	Hybrid method
	Real-time application scenarios of anomaly detection
	Summary of related work

	BTAD algorithm design
	Preprocess
	BTAD model
	The overall structure of BTAD model
	Detail design of Transformer in BTAD model

	Anomaly Score

	Experiment and evaluation
	Experimental setup
	Dataset sources
	Comparative experiment

	BTAD model analysis and discussion
	Comparative analysis
	Ablation analysis
	Sensitivity analysis
	Sensitivity to data volume
	Sensitivity to training epochs
	Sensitivity to sliding window size

	Limitations of proposed method

	Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

